Debugging¶
Before kicking off a full run of inference or model training, we recommend testing your code with a "dry run". If you are generating predictions, this will run one batch of inference to quickly detect any bugs. If you are trainig a model, this will run one training and validation batch for one epoch. If the dry run completes successfully, predict and train away!
$ zamba predict --data-dir example_vids/ --dry-run
$ zamba train --data-dir example_vids/ --labels example_labels.csv --dry-run
In Python, add dry_run=True
to PredictConfig
or TrainConfig
:
predict_config = PredictConfig(
data_dir="example_vids/", dry_run=True
)
GPU memory errors¶
The dry run will also catch any GPU memory errors. If you hit a GPU memory error, there are a couple fixes.
Reducing the batch size¶
zamba train --data-dir example_vids/ --labels example_labels.csv --batch-size 1
In Python, add batch_size
to PredictConfig
or TrainConfig
:
predict_config = PredictConfig(
data_dir="example_vids/", batch_size=1
)
Decreasing video size¶
Resize video frames to be smaller before they are passed to the model. The default for all models is 240x426 pixels. model_input_height
and model_input_width
cannot be passed directly to the command line, so if you are using the CLI these must be specified in a YAML file.
If you are using MegadetectorLite to select frames (which is the default for the official models we ship with), you can also decrease the size of the frame used at this stage by setting frame_selection_height
and frame_selection_width
.
video_loader_config:
frame_selection_height: 400 # if using megadetectorlite
frame_selection_width: 600 # if using megadetectorlite
model_input_height: 100
model_input_width: 100
total_frames: 16 # total_frames is always required
video_loader_config = VideoLoaderConfig(
frame_selection_height=400, frame_selection_width=600, # if using megadetectorlite
model_input_height=100, model_input_width=100,
total_frames=16,
) # total_frames is always required
Reducing num_workers
¶
Reduce the number of workers (subprocesses) used for data loading. By default num_workers
will be set to 3. The minimum value is 0, which means that the data will be loaded in the main process, and the maximum is one less than the number of CPUs in the system. We recommend trying 1 if 3 is too many.
$ zamba predict --data-dir example_vids/ --num-workers 1
$ zamba train --data-dir example_vids/ --labels example_labels.csv --num-workers 1
In Python, add num_workers
to PredictConfig
or TrainConfig
:
predict_config = PredictConfig(
data_dir="example_vids/", num_workers=1
)
Logging¶
To check that videos are getting loaded and cached as expected, set your environment variabe LOG_LEVEL
to DEBUG
. The default log level is INFO
. For example:
$ LOG_LEVEL=DEBUG zamba predict --data-dir example_vids/